The Principle of Mathematical Induction:
Suppose there is a given statement P(n) involving the natural number n such that
(i) The statement is true for n = 1, that is, P(1) is true, and
(ii) If the statement is true for n = k (where k is some positive integer), then the statement is also true for n = k + 1, that is, the truth of P(k) implies the truth of P(k+1).
Then, P(n) is true for all natural numbers n.
Working Rule:
Step 1. Verify the result for n = 1.
Step 2. Assume the result to be true for n=k and then prove that it is true for n=k+1.
There are many mathematical results that can be proven using mathematical induction. For example, summation identities, divisibility statements, inequalities, etc.
Examples:
- Mathematical Induction Proofs for Summation Identities
- Mathematical Induction Proofs for Divisibility Statements
- Mathematical Induction Proofs for Inequalities
गणितीय आगमन (प्रेरण) का सिद्धांत (Principle of Mathematical Induction in Hindi):
मान लीजिए कि प्राकृत संख्या n से सम्बद्ध एक दिया गया कथन P(n) इस प्रकार है, कि
(i) कथन n = 1 के लिए सत्य है, अर्थात P(1) सत्य है, (अथवा कथन किसी निश्चित प्राकृत संख्या n के लिए सत्य है), और
(ii) यदि कथन n = k (जहाँ k कोई धनात्मक पूर्णांक है) के लिए सत्य है, तो कथन n = k + 1 के लिए भी सत्य है, अर्थात् P(k) का सत्य P(k+1) की सत्यता को दर्शाता है।
तब, सभी प्राकृत संख्या n के लिए कथन P(n) सत्य है।
Working Rule:
Step 1. सबसे पहले n = 1 के लिए परिणाम सत्यापित करें, अर्थात कथन P(1) को सत्यापित करें, (अथवा कथन को किसी निश्चित प्राकृत संख्या के लिए सत्यापित करें)।
Step 2. मान लें कि परिणाम n=k के लिए सही है और फिर साबित करें कि यह n=k+1 के लिए सही है।
ऐसे कई गणितीय परिणाम हैं जिन्हें गणितीय प्रेरण (mathematical induction) का उपयोग करके सिद्ध किया जा सकता है। उदाहरण के लिए: योग सर्वसमिकाएँ (summation identities), विभाज्यता कथन (divisibility statements), असमानताएँ (inequalities), आदि।
Examples:
- Mathematical Induction Proofs for Summation Identities
- Mathematical Induction Proofs for Divisibility Statements
- Mathematical Induction Proofs for Inequalities
Copyrighted Material © 2019 - 2024 Prinsli.com - All rights reserved
All content on this website is copyrighted. It is prohibited to copy, publish or distribute the content and images of this website through any website, book, newspaper, software, videos, YouTube Channel or any other medium without written permission. You are not authorized to alter, obscure or remove any proprietary information, copyright or logo from this Website in any way. If any of these rules are violated, it will be strongly protested and legal action will be taken.
Be the first to comment